

Lack of Evidence for MTHFR Polymorphism Genotyping Recommendation: Test Plasma Homocysteine Levels

There is no conclusive evidence supporting the clinical value of MTHFR polymorphism genotyping. If there is a clinical concern regarding hyperhomocysteinemia, Cleveland Clinic Laboratories recommends **Homocysteine** (HOMCYS) testing.

- Multiple practice guidelines agree that MTHFR polymorphism genotyping should not be ordered as part of a clinical evaluation.
- A cheaper, faster, and more accurate way to test for hyperhomocysteinemia is to measure plasma homocysteine levels.
- If plasma homocysteine levels are high, patients can supplement with vitamins such as B6, B12, folate, and folic acid.
- If plasma homocysteine levels are normal, no treatment is indicated—even if there is an MTHFR variant.

Plasma homocysteine levels determine clinical management, regardless of the MTHFR genotype result.

Professional Societies with MTHFR Polymorphism Testing Guidelines

- · American College of Medical Genetics and Genomics · American College of Obstetricians and Gynecologists
- American Academy of Family Physicians
- · Society for Maternal-Fetal Medicine
- · American Board of Internal Medicine Foundation's Choosing Wisely® Initiative

Background

The MTHFR gene (OMIM: 607093) on 1p36.22 encodes the 5,10-methylenetetrahydrofolate reductase enzyme, which converts 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate, the primary circulatory form of folate. This enzyme is also involved in the metabolism of the amino acid, homocysteine. A deficiency of the enzyme can lead to hyperhomocysteinemia.

Polymorphisms are common variants within a gene that do not necessarily affect its function, unlike pathogenic or disease-causing variants. Two commonly tested polymorphic variants in MTHFR are:

• c.665C>T* (p.Ala222Val) *Historically referred to as C677T, the 'thermolabile' variant c.1286A>C (p.Glu429Ala)

These variants are so common that approximately 25% of individuals with Hispanic ancestry and 15% of North Americans with European ancestry have two copies of c.665C>T.

The presence of two copies of c.665C>T (homozygosity) may result in decreased MTHFR enzyme activity and mild hyperhomocysteinemia. Neither of these MTHFR polymorphisms causes severe MTHFR deficiency (<20% enzyme activity).

References

- 1. Lack of Evidence for MTHFR Polymorphism Testing. ACMG Practice Guideline. Genet Med. 2013;15(2):153-6.
- 2. Inherited Thrombophilias in Pregnancy. ACOG Practice Bulletin. No. 197. American College of Obstetricians and Gynecologists. Obstet Gynecol. 2018;132:e18-34.
- 3. Levin BL, Varga E. MTHFR: Addressing Genetic Counseling Dilemmas Using Evidence-Based Literature. J Genet Counsel. 2016;25:901-11.
- 4. Choosing Wisely® Initiative https://www.choosingwisely.org/
- 5. Eng, C. A Genetic Test You Don't Need: Testing MTHFR is usually unnecessary. Cleveland Clinic Health Essentials. https://health.clevelandclinic.org/a-genetic-test-you-dont-need/. Accessed November 19, 2020.